Package: CausalModels 0.2.0

Joshua Anderson

CausalModels: Causal Inference Modeling for Estimation of Causal Effects

Provides an array of statistical models common in causal inference such as standardization, IP weighting, propensity matching, outcome regression, and doubly-robust estimators. Estimates of the average treatment effects from each model are given with the standard error and a 95% Wald confidence interval (Hernan, Robins (2020) <https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/>).

Authors:Joshua Anderson [aut, cre, cph], Cyril Rakovski [rev], Yesha Patel [rev], Erin Lee [rev]

CausalModels_0.2.0.tar.gz
CausalModels_0.2.0.zip(r-4.5)CausalModels_0.2.0.zip(r-4.4)CausalModels_0.2.0.zip(r-4.3)
CausalModels_0.2.0.tgz(r-4.5-any)CausalModels_0.2.0.tgz(r-4.4-any)CausalModels_0.2.0.tgz(r-4.3-any)
CausalModels_0.2.0.tar.gz(r-4.5-noble)CausalModels_0.2.0.tar.gz(r-4.4-noble)
CausalModels_0.2.0.tgz(r-4.4-emscripten)CausalModels_0.2.0.tgz(r-4.3-emscripten)
CausalModels.pdf |CausalModels.html
CausalModels/json (API)
NEWS

# Install 'CausalModels' in R:
install.packages('CausalModels', repos = c('https://ander428.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/ander428/causalmodels/issues

On CRAN:

3.78 score 12 stars 6 scripts 311 downloads 9 exports 36 dependencies

Last updated 2 years agofrom:9c9ee22b66. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 30 2025
R-4.5-winOKJan 30 2025
R-4.5-macOKJan 30 2025
R-4.5-linuxOKJan 30 2025
R-4.4-winOKJan 30 2025
R-4.4-macOKJan 30 2025
R-4.3-winOKJan 30 2025
R-4.3-macOKJan 30 2025

Exports:doubly_robustgestimationinit_paramsipweightingiv_estoutcome_regressionpropensity_matchingpropensity_scoresstandardization

Dependencies:backportsbootbroomcausaldataclicodetoolscpp11dplyrfansigeepackgenericsgluelatticelifecyclemagrittrMASSMatrixmultcompmvtnormpillarpkgconfigpurrrR6rlangsandwichstringistringrsurvivalTH.datatibbletidyrtidyselectutf8vctrswithrzoo