Package: CausalModels 0.2.0
Joshua Anderson
CausalModels: Causal Inference Modeling for Estimation of Causal Effects
Provides an array of statistical models common in causal inference such as standardization, IP weighting, propensity matching, outcome regression, and doubly-robust estimators. Estimates of the average treatment effects from each model are given with the standard error and a 95% Wald confidence interval (Hernan, Robins (2020) <https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/>).
Authors:
CausalModels_0.2.0.tar.gz
CausalModels_0.2.0.zip(r-4.5)CausalModels_0.2.0.zip(r-4.4)CausalModels_0.2.0.zip(r-4.3)
CausalModels_0.2.0.tgz(r-4.4-any)CausalModels_0.2.0.tgz(r-4.3-any)
CausalModels_0.2.0.tar.gz(r-4.5-noble)CausalModels_0.2.0.tar.gz(r-4.4-noble)
CausalModels_0.2.0.tgz(r-4.4-emscripten)CausalModels_0.2.0.tgz(r-4.3-emscripten)
CausalModels.pdf |CausalModels.html✨
CausalModels/json (API)
NEWS
# Install 'CausalModels' in R: |
install.packages('CausalModels', repos = c('https://ander428.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ander428/causalmodels/issues
Last updated 2 years agofrom:9c9ee22b66. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win | OK | Nov 01 2024 |
R-4.5-linux | OK | Nov 01 2024 |
R-4.4-win | OK | Nov 01 2024 |
R-4.4-mac | OK | Nov 01 2024 |
R-4.3-win | OK | Nov 01 2024 |
R-4.3-mac | OK | Nov 01 2024 |
Exports:doubly_robustgestimationinit_paramsipweightingiv_estoutcome_regressionpropensity_matchingpropensity_scoresstandardization
Dependencies:backportsbootbroomcausaldataclicodetoolscpp11dplyrfansigeepackgenericsgluelatticelifecyclemagrittrMASSMatrixmultcompmvtnormpillarpkgconfigpurrrR6rlangsandwichstringistringrsurvivalTH.datatibbletidyrtidyselectutf8vctrswithrzoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Doubly Robust Model | doubly_robust |
One Parameter G-Estimation of Structural Nested Mean Models | gestimation |
Initialize CausalModels Package | init_params |
Parametric IP Weighting | ipweighting |
Standard Instrumental Variable Estimator | iv_est |
Outcome Regression | outcome_regression |
Propensity Matching | propensity_matching |
Propensity Scores | propensity_scores |
Parametric Standardization | standardization |