Package: CausalModels 0.2.0

Joshua Anderson

CausalModels: Causal Inference Modeling for Estimation of Causal Effects

Provides an array of statistical models common in causal inference such as standardization, IP weighting, propensity matching, outcome regression, and doubly-robust estimators. Estimates of the average treatment effects from each model are given with the standard error and a 95% Wald confidence interval (Hernan, Robins (2020) <https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/>).

Authors:Joshua Anderson [aut, cre, cph], Cyril Rakovski [rev], Yesha Patel [rev], Erin Lee [rev]

CausalModels_0.2.0.tar.gz
CausalModels_0.2.0.zip(r-4.5)CausalModels_0.2.0.zip(r-4.4)CausalModels_0.2.0.zip(r-4.3)
CausalModels_0.2.0.tgz(r-4.4-any)CausalModels_0.2.0.tgz(r-4.3-any)
CausalModels_0.2.0.tar.gz(r-4.5-noble)CausalModels_0.2.0.tar.gz(r-4.4-noble)
CausalModels_0.2.0.tgz(r-4.4-emscripten)CausalModels_0.2.0.tgz(r-4.3-emscripten)
CausalModels.pdf |CausalModels.html
CausalModels/json (API)
NEWS

# Install 'CausalModels' in R:
install.packages('CausalModels', repos = c('https://ander428.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ander428/causalmodels/issues

On CRAN:

3.78 score 12 stars 3 scripts 216 downloads 9 exports 36 dependencies

Last updated 2 years agofrom:9c9ee22b66. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winOKNov 01 2024
R-4.5-linuxOKNov 01 2024
R-4.4-winOKNov 01 2024
R-4.4-macOKNov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:doubly_robustgestimationinit_paramsipweightingiv_estoutcome_regressionpropensity_matchingpropensity_scoresstandardization

Dependencies:backportsbootbroomcausaldataclicodetoolscpp11dplyrfansigeepackgenericsgluelatticelifecyclemagrittrMASSMatrixmultcompmvtnormpillarpkgconfigpurrrR6rlangsandwichstringistringrsurvivalTH.datatibbletidyrtidyselectutf8vctrswithrzoo